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Abstract—Recent studies show that overlapping community structure is an important feature of the brain func-
tional network. However, alterations in such overlapping community structure in Alzheimer’s disease (AD)
patients have not been examined yet. In this study, we investigate the overlapping community structure in AD
by using resting-state functional magnetic resonance imaging (rs-fMRI) data. The collective sparse symmetric
non-negative matrix factorization (cssNMF) is adopted to detect the overlapping community structure. Experi-
mental results on 28 AD patients and 32 normal controls (NCs) from the ADNI2 dataset show that the two groups
have remarkable differences in terms of the optimal number of communities, the hierarchy of communities
detected at different scales, network functional segregation, and nodal functional diversity. In particular, the
frontal-parietal and basal ganglia networks exhibit significant differences between the two groups. A machine
learning framework proposed in this paper for AD detection achieved an accuracy of 76.7% when using the
detected community strengths of the frontal-parietal and basal ganglia networks only as input features. These
findings provide novel insights into the understanding of pathological changes in the brain functional network
organization of AD and show the potential of the community structure-related features for AD detection. � 2021

IBRO. Published by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a common prevalent

neurodegenerative disorder, characterized by memory

and cognitive function impairment. Resting state
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functional magnetic resonance imaging (rs-fMRI)

provides a useful way to study the subtle brain

abnormalities in AD (Dennis and Thompson, 2014; de

Vos et al., 2018). Some studies based on rs-fMRI indicate

that the changes in brain function may occur before obvi-

ous clinical symptoms or structural damage (Pievani

et al., 2011; Teipel et al., 2015). In studies of the brain

function, graph theory analysis provides a promising the-

oretical tool for understanding the brain network organiza-

tion. Typically, the brain functional network comprises

nodes and edges, which are defined as brain regions

and their interactions, respectively. Such interactions

(i.e., associations among the brain regions) reflect the

temporal dependency of the time series of different brain

regions, termed as functional connectivity (Biswal et al.,
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1995). Various studies suggest that the framework of the

brain functional network and graph theory analysis has

great potentials in diagnosing neurological diseases

(Fornito et al., 2015; de Vos et al., 2018). For AD, abnor-

mal connectivity patterns have been observed based on

network association matrices constructed by different

methods (Noroozi and Rezghi, 2020; Sun et al., 2021).

Besides, graph measures, such as the rich-club and clus-

tering coefficient, have been adopted to reveal the pathol-

ogy of AD (Li et al., 2019; Xue et al., 2020).

In particular, community structure of the brain

functional network offers a valuable tunnel to study the

function of both normal and abnormal brains.

Community structure is one of the most essential

topological features of the brain functional network. A

community (or module) of the brain functional network is

a cluster of highly connected nodes with only weak

connections among the different clusters. Such

community structure plays an important role in

maintaining the efficiency of information communication,

by balancing the functional segregation and information

integration via hubs, where functional segregation refers

to the efficiency of information exchange among

functionally related regions within the modules and

functional integration measures the efficiency of global

communication (Sporns, 2013). The community structure

has been found to change with age and cognitive ability

(Crossley et al., 2013; Wen et al., 2018). In addition, com-

munity structure-related features of brain structural net-

works in AD patients have been investigated and used

for AD classification (Prasad et al., 2015; John et al.,

2017; Hojjati et al., 2019). A decreased number of larger

communities in the AD patients compared to the healthy

group has been found in Contreras et al. (2019). Further-

more, disrupted modular organization and information

communication in AD have been consistently discovered

by various studies using different modalities and compu-

tational methods (Dai and He, 2014). These studies sug-

gest that community structure-related features might be

potentially useful for AD detection. However, most AD

studies focus on non-overlapping community structures.

In fact, many studies suggest that the brain functional net-

work, like many other real-world complex networks, have

an overlapping community structure (Palla et al., 2005;

O’Reilly et al., 2010; Cole et al., 2013).

In an overlapping community structure, one brain

region could participate in more than one communities.

Several recent algorithms for overlapping community

structure detection have been applied to rs-fMRI data

(Wu et al., 2011; Najafi et al., 2016; Lin et al., 2018). In

this work, we deploy the collective sparse symmetric

non-negative matrix factorization (cssNMF) method to

detect the overlapping community structure, which has

been proposed in our previous work (Li et al., 2018).

The cssNMF method operates on a weighted brain func-

tional network. The advantage of this method is that it not

only identifies the group-level overlapping community

structure across multiple participants, but also preserves

the individual differences in terms of community

strengths. Such inter-participant variation in the communi-
ties can be further used as classification features for AD

detection.

This study aims to investigate the changes in the

overlapping community structure of AD patients.

Specifically, the overlapping community structure is

detected by using cssNMF with non-negative adaptive

sparse representation (NASR), which has been

proposed in our previous work (Li and Wang, 2015; Li

et al., 2018). The community structure is studied in differ-

ent aspects, including the optimal number of communi-

ties, reproducibility, network functional segregation, and

nodal functional diversity. In particular, we studied the

hierarchy of communities detected at different scales, by

using the agglomerative hierarchical clustering (Hastie

et al., 2009). Furthermore, we proposed a machine learn-

ing framework to deploy the community-structure-based

features for AD detection. We expect this study to provide

novel insights into the community structure of the brain

functional network in AD, and explore potential biomark-

ers for AD detection.

2. EXPERIMENTAL PROCEDURES

2.1. Participants and data acquisition

All participants aged from 60 to 90 years old in the

Alzheimer’s Disease Neuroimaging Initiative (ADNI-2)

during the screening visit ( http://adni.loni.usc.edu) were

analyzed in this study. All participants were divided into

a patient group and a normal control (NC) group.

Participants with a mild to moderate level of AD

measured by the mini-mental state examination (MMSE)

score ranging from 14 to 26 and the clinical dementia

rating (CDR) score of 0.5 or 1 were selected into the AD

group. Healthy participants in the NC group had an

MMSE score ranging from 27 to 30 with CDR = 0. All

the participants were exclusive of Parkinson’s disease

and depression, and all the AD participants were

diagnosed as probable AD. It resulted in a dataset of 69

participants (31 AD patients and 38 healthy participants).

All rs-fMRI and structural magnetic resonance

imaging (sMRI) images used in this work were acquired

by Philips scanners following the ADNI acquisition

protocol (Jack et al., 2008), with a repetition time (TR)

of 3 s and a field strength of 3.0 T. Details of the scanning

parameters are available from http://adni.loni.usc.edu.

Informed consent was obtained from all the individual par-

ticipants included in the study.

2.2. Data preprocessing

The rs-fMRI and sMRI images were preprocessed by

using the Data Processing Assistant for Resting-State

fMRI (DPARSF) toolbox (Yan and Zang, 2010) in

MATLAB 2020b, following the widely-accepted pipelines.

Specifically, for each participant, the first 7 of all the 140

echoplanar imaging (EPI) volumes were discarded for sig-

nal equilibrium. Slice timing correction and realignment for

head motion correction were performed on the remaining

volumes. For each voxel, the time series were detrended

with the Friston-24 head motion parameters, cere-

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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brospinal fluid (CSF) and white matter (WM) signals were

regressed out. Afterwards, the T1-weighted image was

coregistered to the mean functional image. Normalization

to the Montreal Neurological Institute (MNI) space was

performed by using the DARTEL procedure. The signals

were then spatially smoothed with a 6 mm full width half

maximum (FWHM) Gaussian kernel and bandpass fil-

tered (0.01–0.08 Hz). In terms of head motion, 9 partici-

pants were excluded under the inclusion criteria

because the number of frames (with framewise displace-

ment (FD) > 0:5 (Power et al., 2011)) was more than 50,

and the overall head motion was more than 2 mm or 2

degree. The t-test was performed on the FD parameters

of the AD and NC groups. The result (p > 0:05) reveals
no significant difference in head movement between the

two groups. This resulted in a dataset of 60 participants

in total (28 AD patients and 32 NCs). Finally, the whole-

brain was partitioned into 90 regions of interest (ROIs)

according to the automated anatomical labeling (AAL)

template (Tzourio-Mazoyer et al., 2002), and the mean

time series over all voxels were extracted for each ROI.

Besides, the AD patients (13 female, mean age:

73:8� 6:1 yrs, education level: 16:1� 2:9 yrs) and the

NCs (19 female, mean age: 74:4� 5:7 yrs, education

level: 16:3� 2:0 yrs) were matched in age, sex and edu-

cation level.
2.3. Functional connectivity

For the computation of functional connectivity, we

adopted the NASR method, instead of using the

Pearson correlation method. In our previous work, we

have shown that the detected communities benefit from

the NASR-based connectomes compared to the

Pearson correlation-based connectome, by achieving

better reproducibility and interpretability (Li and Wang,

2015). The main difference between these two methods

is that NASR takes into account the influence from the

other nodes when computing functional connectivity. In

other words, it computes the associations between one

node with all the other nodes simultaneously, rather than

calculates the pairwise associations. Besides, NASR pro-

duces non-negative and sparse functional connectivity, as

it automatically preserves only the most important con-

nections, with the advantage of improving the inter-

pretability and reducing the data complexity. Therefore,

we applied the NASR method to compute functional con-

nectivity in this work. The code for implementing the

NASR algorithm is available in https://github.com/xuanli-

ac/NASR. As a result, we derived a symmetric 90� 90

association matrix for each participant, representing the

functional connectome.
2.4. Overlapping community structure detection

We applied the cssNMF method (Li et al., 2018) for the

community detection, as it identifies the group-level over-

lapping community structure across multiple participants

while maintaining individual differences in community

strength. Briefly, given the non-negative association

matrices of a set of participants, i.e.,

G
i 2 Rn�nði ¼ 1; . . . ;mÞ where n andm denote the number
of nodes and the number of participants respectively,

cssNMF detects the community structure by optimizing

the following objective function:

min
H;SP0

1
2

Xm

i¼1

kGi � HS
i
HTk2F þ bkHk1

s:t:8p : maxðhpÞ ¼ 1;p ¼ 1; . . . ; k:

ð1Þ

The detected group-level communities are

represented in H ¼ ðh1; . . . ; hkÞ 2 Rn�k, where each

element Hij reflects the weight of node i in community j

and k is the number of detected communities. The

individual differences are preserved in the diagonal

matrix S
i ¼ diagðsiÞ 2 Rk�k with si 2 Rk, where sip is the

average connection strength of the nodes of community

p in the network of participant i and indicates the

expression level of community p in participant i. The

regularization parameter b > 0 controls the sparsity of

the H, i.e., the number of nodes participating in a

community. The code for implementing the cssNMF

algorithm is available in https://github.com/xuanli-ac/

cssNMF.

Grid searches with 2-fold cross-validation were

adopted to determine the parameters k and b for

community detection as done by Li et al. (2018), where

k ranges from 2 to 16 and b ranges from 0 to 1 with a step

size of 0.1. Among them, the range for value k was

selected according to previous studies (Van den Heuvel

and Pol, 2010; Yeo et al., 2011; Wu et al., 2011; Yeo

et al., 2014; Najafi et al., 2016; Mirzaei and Soltanian-

Zadeh, 2019). Besides, for each computation, 20 runs

with random initializations were performed to select the

best result with the minimum value of the objective

function.

2.5. Analysis of group-level differences in community
structure
2.5.1. Number of detected communities. Firstly, we

investigated whether the optimal number of communities

differs between the AD and NC groups by measuring

the cross-run consistency. As the community structure

detected by cssNMF may vary from run to run due to

different initializations, a solution with higher stability

across runs is more likely to reflect the underlying

community structure. In this sense, the cross-run

stability could inform of the optimal value of k.

Specifically, the community structure was detected for

the AD and NC groups separately by using cssNMF

under different values of k. The cross-run consistency

was then measured by the cophenetic correlation

coefficient, a commonly-used measure for determining

the optimal number of components in NMF methods

(Brunet et al., 2004). The cross-run consistency was com-

puted with 20, 50 and 100 runs.

2.5.2. Reproducibility of the detected community
structure. The split-half reproducibility was analyzed

and compared between the two groups. The split-half

reproducibility indicates whether the detected

community structure is consistent across different

https://github.com/xuanli-ac/NASR
https://github.com/xuanli-ac/NASR
https://github.com/xuanli-ac/cssNMF
https://github.com/xuanli-ac/cssNMF
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subsets of participants. All the participants within each

group were randomly divided into 2 halves and the

community structure was derived for each half. The

similarity between two community structures was

measured by the cosine similarity. Before that, a graph

matching procedure was performed to rearrange the

order of the detected communities by using the

Hungarian algorithm (Lovász and Plummer, 1986). The

similarity was computed for each pair of matched commu-

nities and then averaged over all detected communities

for each group. The split-half procedure was repeated

20 times for each group and the reported similarity was

computed by averaging over all the repetitions.

2.5.3. Hierarchy of the detected communities. Then

we investigated the differences between the AD and NC

groups in terms of the hierarchy of their community

structures. Specifically, for each group, we collected all

the communities (i.e.,hp) derived under different values

of k and applied the agglomerative hierarchical

clustering method (Hastie et al., 2009). The similarity

between a pair of communities was measured by cosine

similarity. A dendrogram depicting the hierarchical struc-

ture of these communities was derived as a result for

each group.

2.6. Analysis of group-differences in network
measures

Two types of network measures were compared between

the AD and NC groups, which characterize the functional

segregation and functional diversity of the overlapping

community structure, respectively. For each measure, it

was computed for each participant and compared

between the two groups. Statistical significances of the

differences in the mean values were tested by using the

non-parametric permutation tests with 5000

permutations. For node-wise measures, correction for

multiple comparisons was performed by constructing the

null distribution using the maximum values among all the

nodes for each permutation (Nichols and Holmes, 2002).

2.6.1. Functional segregation. In a modular network

structure, functionally coherent nodes are clustered into

a community, which may serve a specific purpose of the

brain. In this study, two measures were used to

characterize the functional segregation of the

overlapping community structure derived by cssNMF,

i.e., within-community connection strength and overall

community strength. For each participant, the within-

community connection strength was estimated by

summing over the weights of connections within a

community and then averaged over all the k communities:

Xk

p¼1

ksiphph
T
pk1 ð2Þ

For each participant, the community strength was

computed by summing the community strength (sip) over

all the k communities:
Xk

p¼1

sip ð3Þ
A higher value of sip indicates a more compact

community, where the belonging connections are highly

coherent.

2.6.2. Functional diversity. In an overlapping

community structure, a node could participate in multiple

communities serving diverse functions. To depict the

node-wise functional diversity, we applied the Shannon’s

entropy measure (Shannon, 1948), as used in Najafi

et al. (2016). For a given participant i, the functional diver-

sity of node j is calculated by

�
Xk

p¼1

P
i
jp ln P

i
jp ð4Þ

where P
i ¼ H � diagððsiÞ12Þ, and si ¼ ðsi1; . . . ; sikÞ 2 Rk

contains the community strengths of participant i.

Therefore, P
i
jp denotes the posterior probability of node j

belonging to community p for participant i. The entropy

measure achieves its maximum value when

Pjp ¼ 1
k
ðp ¼ 1; . . . ; kÞ.

2.6.3. Machine learning framework for AD detec-
tion. To further validate the differences in community

structure between the AD and NC groups, we adopted a

machine learning framework to classify AD patients and

NCs. Specifically, we used the leave-one-out cross -

validation (LOOCV) and the linear discriminant analysis

(LDA) classifier. It means that in each fold one sample

is used as the testing sample while all the rest samples

are used as the training samples. The procedure is

repeated until all samples have been chosen as the

testing sample once and only once. Then classification

accuracy is computed over all the testing samples. On

the training set within each fold, we derived the

community structure for the AD and NC group

separately by using cssNMF, denoted by HAD 2 Rn�k

and HNC 2 Rn�k respectively. Then we created a

common template Hc ¼ ðHAD;HNCÞ 2 n�2k and applied

the template to all the participants in the training set

with cssNMF to derive the community strengths, as well

as to the participant in the testing set. The community

strengths of each participant were used as features for

classification. The accuracy, sensitivity and specificity

were computed for the classification. Besides,

permutation tests were conducted to evaluate the

statistical significance of the derived accuracy against

the chance level, where the features were randomly

permuted before classification and the same procedure

was repeated 5000 times. A null distribution of the

accuracies derived from the permutations was

constructed and the p-value of the true accuracy was

then determined by comparing to the 95th percentile of

the null distribution.

3. RESULTS

3.1. Parameter selection

Figs. 1A and B show the parameter selection results for

the AD and NC groups, respectively. As can be seen,



Fig. 1. Parameter selection for cssNMF by grid search using cross-validation. (A) and (B) are the test error results derived for the AD group and the

NC group respectively.
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for both groups the cross-validation error stays relatively

stable as b increases from 0 to 0.1, while it starts to

increase quickly when b increases from 0.2 to 0.6. It

indicates that the cssNMF method achieves an

appropriate level of sparsity when b ¼ 0:1. As b
increases to larger than 0.6, the cross-validation error

reaches a plateau, indicating a significant loss of

generalizability due to the increased sparsity. In

contrast, the selection of k is not straightforward from

the result. When b changes from 0 to 0.4, the cross-

validation error keeps dropping as k increases from 2 to

16, while when b is larger than 0.5, k seems to have

little influence on the cross-validation error. Therefore,

the sparsity level b was set to 0.1 for the both groups in

the subsequent analyses.
3.2. Differences in terms of the number of
communities

Fig. 2 shows the results of cross-run consistency for the

AD and NC groups. Overall, the stability of the

community structure achieves a high level of above 0.9

when k > 2 for both groups. For the AD group, the

coefficient achieves the highest value when k is around

10. By contrast, the NC group attains the highest

stability when k is around 14 and obtains another peak

when k is around 6. In particular, the stability of the NC

group is higher than that of the AD group at a finer

scale of community structure where k is relatively large.

For example, the cophenetic correlation coefficient

values of AD are 0.9729, 0.9711, and 0.9748, and the

values of the NC group are 0.9819, 0.9848, and 0.9856

with k ¼ 13 when the number of runs are 20, 50, and

100, respectively. It indicates that the stability of the NC

group is higher than that of the AD group at a finer

scale of community structure where k is relatively large.

Importantly, the trend of NC gradually rises as the k
value increases, while AD tends to be stable when the k

value is relatively small. This may indicate that the NC

group tends to have a more modularized network

structure than the AD group. Besides, the AD group

reaches higher correlation levels with fewer

communities from overall. For the AD group, the stability

is not improved as the scale becomes finer, while the

stability will gradually increase for the NC group. For the

NC group, this trend indicates that there are still small

structures in the large modules. Consequently, when the

scale becomes delicate, the small structures are still

stable and the value of the stability will increase.

Compared with the AD group, the brain network of the

NC group tends to be modular. This further supports our

conclusion from another aspect.

3.3. Differences in terms of split-half reproducibility
of community structure

The split-half reproducibility of the detected community

structures for both groups is shown in Fig. 3. The

reproducibility is averaged over all the 20 splits and the

error bar denotes the standard deviation. On the whole,

the reproducibility of the NC group is consistently higher

than that of the AD group when k is larger than 6. A t-

test revealed that the difference of split-half

reproducibility between the two groups over all the

values of k is significant (p < 0:01). The higher

reproducibility of the NC group suggests that the

community structures are more stable and consistent

across different cohorts of participants in the NC group

than in the AD group.

3.4. Differences in terms of the hierarchy of the
detected communities

To further explore where the differences between the two

groups in the community structure lie, we analyzed the



Fig. 2. Cross-run consistency (cophenetic correlation coefficient) of the detected community structure under different values of k. (A) and (B) are
the results derived for the AD group and the NC group respectively. The cross-run consistency is measured by the cophenetic correlation coefficient

with the number of runs of 20, 50 and 100 separately.

Fig. 3. Split-half reproducibility of detected community structures under different values of k for the

AD and NC groups. The similarity of community structures is calculated by using the cosine similarity.

The reproducibility is averaged over all the 20 repetitions within each group for each value of k, where
the error bar indicates the standard deviation.
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hierarchy of the communities detected over different

values of k. Specifically, instead of choosing one

community structure with a specific number of

communities, we collected all the communities derived

with k varying from 5 to 16 (i.e., 126 communities in

total) and adopted agglomerative hierarchical clustering

to reveal the hierarchical structure for each group.
Fig. 4A displays the hierarchy of

these communities for the AD and

NC groups in the upper panel and

lower panel respectively. The cut-

off distance was set to 0.5 where

16 clusters of communities were

identified for both groups. The

clusters shown in Fig. 4B and

Fig. 4C were derived by averaging

over all communities within each

cluster for the AD and NC groups

respectively. Besides, in order to

investigate which known resting-

state networks were matched to

the 16 clusters, we mapped these

communities represented by

membership matrices in Fig. 4B

onto the human brain models for

the two groups (the visual

representation of all the

communities identified is supplied

in the Supplementary material).

And then we checked the

distribution of these communities

on the brain model to match the

known resting-state network.

Finally, we found these clusters

roughly cover 11 common RSNs,

including visual network (VN),

orbitofrontal cortex (OFC),

salience network (SN), DMN,

execution control network (ECN),
left/right frontoparietal networks (L/RFP), sensor-motor

network (SEN), limbic system (LIM), ventral attention

network (VAN) and basal ganglia (BG). The similarity

between the two groups for each RSN computed by the

cosine similarity was shown at the bottom. In particular,



Fig. 4. Hierarchy structure of the communities detected over different values of k. (A) displays the dendrogram of the hierarchical structure of the

communities derived with k varying from 5 to 16 for AD and NC in the upper panel and lower panel respectively. The X axis represents the different

clusters, and Y axis represents the distance between the clusters. The cut-off distance is set to 0.5, where all communities are merged into 16

clusters for each group. These clusters cover 11 common RSNs, including visual network (VN), orbitofrontal cortex (OFC), salience network (SN),

DMN, execution control network (ECN), left/right frontoparietal network (L/RFP), sensor-motor network (SEN), limbic system (LIM), ventral attention

network (VAN) and basal ganglia (BG). The similarity for each RSN between the two groups is shown at the bottom and each RSN is marked by one

color. (B) and (C) show the resultant clusters by averaging the communities within each cluster for the AD and NC groups, respectively. The column

represents the community index and the row represents the node index in the matrix represention. The red boxes highlight the differences between

the two groups in terms of within-cluster hierarchical structure.
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the SEN, frontoparietal (FP) and BG networks have

significantly different hierarchies between the two

groups than the other networks, as highlighted in

Figs. 4B and C. Such differences in the community

structures may indicate alterations of function in these

areas.

We then depicted how the divergence between the AD

and NC groups in the hierarchy structures happened for

the FP, SEN and BG networks in Fig. 5. Figs. 5A and B
show the communities related to FP and SEN networks

for the AD and NC groups, respectively. For the AD

group, C1-4 correspond to the clusters 8–11 in Fig. 4,

which were detected and remained unchanged since

k ¼ 15, while for the NC group, C1-3 correspond to the

clusters 8–10 in Fig. 4, which were detected and

remained unchanged since k ¼ 14. The main difference

is that the parietal regions of the FP networks have

much lower weights in the AD group than in the NC

group, and were grouped into a separate community

(C4) in the AD group. This may reflect alterations in the

communication between the frontal and parietal regions

in AD patients. Figs. 5C and D show the communities
related to the BG network of the AD and NC groups,

respectively. The BG network mainly covers the

olfactory, putamen, pallidum and thalamus and caudate

regions. For the AD group, the BG network was divided

into 2 parts at k ¼ 12 and further divided into 3 parts at

k ¼ 16, whereas for the NC group, the BG network was

divided into smaller communities as a relatively smaller

value of k and resulted in 4 parts at k ¼ 15. This may

indicate that the connections within the BG networks

changes in the AD group, resulting in a less modular

structure.
3.5. Differences in functional segregation

The functional segregation of the community structure is

evaluated in terms of the within-community connection

strength and community strength for both groups. The

mean as well as the standard deviation across all

participants of the within-community connection

strengths and the community strength are plotted in

Fig. 6A and Fig. 6B respectively. Permutation tests

reveal that the NC group has significantly and



Fig. 5. The visualization of differences in the FP and BG networks between the AD and NC groups via the BrainNet Viewer toolbox. (A) shows the

communities related to FP and SEN networks identified at k ¼ 15 for the AD group, where C1-4 correspond to the clusters 8–11 in Fig. 4,

respectively. (B) shows the communities related to FP and SEN networks identified at k ¼ 14 for the NC group, where C1-3 correspond to the

clusters 8–10 in Fig. 4, respectively. (C) shows the communities related to BG networks identified at k ¼ 12; 16 for the AD group, where C1-3

correspond to the clusters 14–16 in Fig. 4, respectively. (D) shows the communities related to BG networks identified at k ¼ 11; 13; 15 for the NC

group, where C1-4 correspond to the clusters 13–16 in Fig. 4, respectively.
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consistently stronger within-community connection

strengths than the AD group under different values of k.
Similarly, the community strength also achieves a

significantly higher value in the NC group than in the AD

group under different values of k. Such significantly
reduced within-community strengths and community

strengths of the AD group indicates that the AD patients

may undergo an overall decline of the functionality of

distinct communities, thus resulting in a loss of the

functional separation of the brain network.



Fig. 6. Comparison between the AD and NC groups in within-community connection strengths and community strength under different values of k.
(A) and (B) display the results of the within-community connections strengths and community strength, respectively. The mean value across all

participants as well as the standard deviation is plotted for each value of k. The star at the bottom indicates that there is a significant difference

between the two groups with p < 0:05 (AD>NC marked in blue and NC>AD marked in red).
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3.6. Differences in nodal functional diversity

Fig. 7 shows the results of nodal functional diversity of the

AD and NC groups. Fig. 7A counts the number of nodes

that show significantly larger functional diversity in the

AD group (yellow) and in the NC group (blue) separately

(p < 0:05, corrected) under each value of k. We

observed that the NC group consistently had more

nodes with larger functional diversity compared to the

AD group under all values of k. Fig. 7B displays the

nodes that are consistently (across at least 10 different

values of k) reported to have higher functional diversity

in the AD group (yellow, 9 nodes) and in the NC group

(blue) separately. 29 nodes were found to have larger

functional diversity in the NC group than in the AD

group, covering the frontal, limbic, occipital, parietal,

basal ganglia and temporal regions. This may suggest

reduced functional diversity spanning all over the brain

in the AD patients. By contrast, 9 nodes showed the

opposite trend by having a higher functional diversity in

the AD group. However, this may not suggest a true

enhancement of the functional diversity of these nodes.

As revealed by Fig. 6, the AD group showed overall

reduced community strength. This may suggest that

these regions have declined function, thus resulting in a

blurred functional distinction.
3.7. Performance of community-structure-based
classification

To further validate the differences in community structure

between the AD and NC groups, we adopted a machine

learning framework to use community structure-related

features for AD detection. As described in the method

section, the community strengths of each participant are

used as features for classification. Fig. 8 illustrates an
example of the extracted features on the whole dataset

with k ¼ 9, where the similarity of the community

structure between the two groups is 0.95 (Fig. 8A).

Specifically, we derived the community structure for

each group separately and combine the two community

structures into a common template Fig. 8B. Then by

using cssNMF with the common template, we derived

the corresponding community strengths for each

participant (Fig. 8D). We found that AD patients had

larger weights for the communities in the AD part of the

template, and vice versa for the NCs. The community

strengths between the two groups showed a significant

difference (p < 0:05, t-tests) for 15/18 communities,

although most of the matched AD-NC community pairs

had a relatively high similarity, as shown in Fig. 8C.

The LOOCV procedure was used when performing

the classification. The advantage is that the testing

participant was totally unseen when constructing the

common template. Figs. 9A, B and C show the

classification performance in terms of accuracy,

sensitivity and specificity, respectively. We also tested

the classification performance of the two networks that

show substantial differences in the hierarchy of

communities, i.e., the FP and BG networks. Overall, the

accuracy was highest when jointly using the community

strengths of the FP and BG networks (FP + BG),

compared with using all communities or using FP or BG

alone. Permutation tests showed that the classification

accuracy when using the FP + BG feature was

significantly higher than chance level when k > 6

(p < 0:05), achieving above 60%. In the best case, the

accuracy achieved 76.7% at k ¼ 15. Similarly, the

FP + BG feature also showed better performance in

terms of sensitivity and specificity than using FP or BG

feature alone. Besides, the BG network outperformed



Fig. 7. Comparison between the AD and NC groups in node functional diversity. (A) displays the number of nodes that show significantly different

functional diversity between the two groups (p < 0:05, corrected), under different values of k. (B) plots the nodes that have consistently larger

functional diversity in the AD group (yellow) and in the NC group (blue) across at least 10 different values of k, this representation is obtained by the

BrainNet Viewer toolbox.
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the FP network in sensitivity while vice versa for the

specificity.
4. DISCUSSION

In this work, we studied the overlapping community

structure of AD patients. Our results showed that

remarkable alterations occurred in the community

structure of the brain functional networks of the AD

patients, in terms of the optimal number, reproducibility

and the hierarchy of the detected communities. Such

alterations resulted in reduced brain functional

segregation and integration in AD patients, which were

measured by community strength and nodal functional

diversity, respectively. Furthermore, using a LOOCV

machine learning framework, we showed the potential

for classifying AD patients and their healthy

counterparts based on community structure-related

features.

Our study focuses on the alterations in the

overlapping community structure of functional brain

network in AD patients, where the NASR and cssNMF

algorithms were combined to detect the overlapping

community structure. For both the NC and AD groups,

we identified several well-recognized communities, such

as DMN, visual, basal ganglia and frontal-parietal

networks. These RSNs have been consistently reported

by previous studies using different methods (Van den

Heuvel and Pol, 2010; Yeo et al., 2014). However, the

two groups exhibited different patterns in the relationship

between the number of communities and the stability of

the detected communities. Results showed that the NC

group was more likely to achieve a stable community

structure when the number of communities increased,

indicated by the higher value of cross-run consistency

(Fig. 2) and split-half reproducibility (Fig. 3). It indicates
that when more communities are identified, the assign-

ment of the nodes is of less certainty in the AD patients,

resulting in the decrease of the stableness. Namely, the

brain functional network of the AD group is less organized

than that of the NC group at a refined scale. This finding is

in line with a previous MEG study, which has discovered a

significant reduction in module count of the AD group in

different frequency bands (de Haan et al., 2012). The

decrease in the number of communities in the AD group

may be due to the weakened functions of some brain

areas, which makes the stability of the community on a

finer scale decrease.

The hierarchy of the communities detected at different

scales also showed the difference between the AD and

NC groups, especially in the FP and BG networks

(Fig. 4). For the FP network, we found that the weights

of regions in the frontal lobe were much higher in the

AD patients than in the NCs. This is in line with the

findings of several previous studies, which discovered

increased connectivity in the frontal and prefrontal

regions in AD patients (Wang et al., 2006; Supekar

et al., 2008). These studies indicate that AD patients

may depend on the increased connectivity weights in

the frontal lobe to compensate for reduced temporal con-

nectivity (Gould et al., 2006). For the BG network, we

found that it was more modularized in the NC group than

in the AD group. Abnormalities in regions related to the

BG network have been reported by some previous stud-

ies. For example, structurally, MRI studies have found

pathological changes in the thalamus, basal ganglia and

caudate in patients with AD and MCI (de Jong et al.,

2008; Ryan et al., 2013; Pini et al., 2016). Functionally,

altered functional connectivity has been observed within

the BG network (Binnewijzend et al., 2012) and for the

thalamus (Li et al., 2015). The difference may be caused

by the atrophy of the accumbens and thalamus in the BG



Fig. 8. An example of extracting community strengths as features on the whole dataset. (A) displays the similarity between the community structure

derived on the AD and NC groups under different values of k. k ¼ 9 is selected as an example for illustrating the extracted features. (B) shows the

community structure derived for the AD and NC groups in the left and right panel, respectively. The rows and columns in the matrix representation

indicate the node index and the community index, respectively. (C) shows the similarity between each AD-NC community pairs (matched). (D)
shows the extracted features, i.e., the strengths corresponding to the communities in (B) for each participant. The rows and columns in the matrix

representation indicate the participant index and the community index, respectively. The red star under each community indicate that the difference

in community strength between the two groups is significant (p < 0:05, t-tests) for that community.
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network in AD patients. Taken together, the abnormalities

in FP and BG networks may be important biomarkers for

the detection of AD patients. These findings may clarify

that the combination of the cssNMF and agglomerative

hierarchical clustering is a promising method to study

the pathological changes in the overlapping and hierarchi-

cal community structures in AD patients.

In terms of functional segregation and diversity, on the

one hand, the AD group shows significantly lower within-

community connection strength and community strength

under different values of k than the NC group (Fig. 6),

implying reduced functional segregation of the brain

functional network of the AD patients. Several previous

studies have also reported declined functional

segregation by using different measures, such as intra-

modular connection loss (de Haan et al., 2012) and lower

clustering coefficient (Supekar et al., 2008; Brier et al.,

2014). On the other hand, we found that the functional

diversity remarkably reduces in nodes spreading over

the frontal, parietal, occipital, temporal, basal ganglia

and limbic regions of the AD group, as shown in Fig. 7.

Similar abnormality has also been observed in non-

overlapping community structures, indicated by reduced

functional integration (Liu et al., 2013; Dai and He,
2014). Clinically, the most obvious features of AD patients

are the decline in memory and execution. Among them,

memory depends on the information flow within certain

specific brain regions. Namely, it is related to the func-

tional segregation ability. The execution ability depends

on the information integration among all brain regions,

which is associated with the function integration ability

of the entire brain. This is in line with our finding that the

functional segregation and integration are reduced in the

AD group, which indicates that our approaches are effec-

tive for measuring the difference between the NC group

and the AD group.

Discovering group differences between AD patients

and NCs deepens our understanding of AD.

Furthermore, a more practical and urgent task may be

to find stable biomarkers to aid in the diagnosis on an

individual basis. In this study, the community structure-

based at the individual level was used for AD

classification. It can obtain more than 60% classification

accuracy rates with the statistically significant when

community strengths are used as features. Notaly, the

best accuracy can achieve 76.7% at k ¼ 15 when using

the FP + BG feature. Many studies have implemented

the AD classification using neuroimaging data of



Fig. 9. Performance of the community structure-based classification framework under different values of k. (A) shows the classification accuracy

under different values of k. ‘‘All” means the community strengths of all communities are used as features. ‘‘FP” and ‘‘BG” denote the only community

strength of the FP network or the BG network is used, respectively. ‘‘FP + BG” means the community strengths of both the FP and BG networks are

used as features. The red star on top of each condition indicates that the true accuracy is significantly larger than the chance level, revealed by a

permutation test (p < 0:05). (B) and (C) show the corresponding sensitivity and specificity respectively.
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different modalities such as MRI or fMRI (Rathore et al.,

2017). In particular, functional connection values and

graph theory metrics are the most commonly used fea-

tures in AD classification based on fMRI data. An fMRI

study found that compared to graph metrics, function con-

nection values have more recognition ability for AD

patients. However, it is usually necessary to reduce the

feature dimension by using supervised or unsupervised

methods before classification because the functional con-

nection has high dimensionality. Supervised methods

often need to be combined with cross-validation to reduce

feature dimensionality, leading to retaining different fea-

tures in different cross-validation folds. While the features

extracted by commonly used unsupervised methods such

as principal component analysis (PCA) often lack intuitive

neurophysiological meaning. In this study, the cssNMF

algorithm is used as both an unsupervised dimensionality

reduction method and a feature extraction method. In

addition, the community strength extracted by the

cssNMF method as the AD classification feature has clear
physical and neurophysiological significance, which

makes the classification results easier to interpret.

The main limitation of this work is that the sample size

of both the AD group and the NC group is relatively small.

This may cause a lack of generalizability of the findings of

this work. To further validate the differences of community

structure identified in this work, we performed a machine

learning framework with LOOCV to adopt the community

structure derived features for AD detection. The results

showed that these features could achieve an accuracy

of 76.7% in the best case. In particular, using the

features related to the FP and BG networks achieved

the best overall accuracy, which further supported our

finding. These results demonstrated the potentials for

using community structure-related features for the

detection of AD. Many efforts have been made to

design machine learning frameworks for AD or MCI

detection, by using various features extracted from

structural and functional brain images (Rathore et al.,

2017). Future work could incorporate different types of



50 H. Han et al. / Neuroscience 484 (2022) 38–52
features extracted from multi-modal imaging data to fur-

ther improve the classification accuracy. Besides, the

head motion has a significant effect on measures of func-

tional connectivity and community identification. There-

fore, it is necessary to consider the head motion

correction models to reduce motion artifact in data prepro-

cessing. For example, confound regression strategies

may be adopted to mitigate the impact of head motion

on functional connectivity and community identification

to improve our research in the future work (Ciric et al.,

2017). Furthermore, a more refined classification of the

AD group is a problem worth exploring in the follow-up

work. Lastly, we used one preprocessing pipeline to

implement the data pre-processing and one anatomical

atlas to define the ROIs in this work. Different pre-

processing steps, such as whether to perform global sig-

nal regression or scrubbing, may affect the consistency of

the value. In addition, it showed that using different brain

parcellations could significantly change the findings.

Therefore, the reliability and reproducibility of the findings

in this work need to be further validated by using more

than one preprocessing pipeline and other brain

parcellations.

In this study, we investigated the overlapping

community structure of AD patients. An approach using

NASR with cssNMF was used to detect the overlapping

community structure and preserve the individual

differences in community strength. We found that the

AD patients and the NCs showed remarkable

differences in many aspects of the overlapping

community structure, including the optimal number of

communities, reproducibility, hierarchy of communities

detected at different scales, network functional

segregation and nodal functional diversity. Furthermore,

a machine learning framework with LOOCV was

deployed for AD detection based on the detected

community strength, which achieved classification

accuracy of 76.7% in the best case where the features

related to BG and FP networks were used. We believe

that this study provides novel insights into the brain

functional network organization in AD and shows the

potential of the community structure-related features to

serve as biomarkers for AD diagnosis.
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